Exercises 3.4 🙃 page 166 1. (a) 2t - 10 (b) -4 ft/s (c) t = 5 (d) t > 5(e) 34 ft (f) s = -4

3. (a)
$$3t^2 - 24t + 36$$
 (b) -9 ft/s
(d) $0 \le t < 2, t > 6$ (e) 96 ft
(f) $t = 8, s = 32$
 $t = 6, s = 0$
 $t = 0, t = 2$

$$s = 0$$

$$0$$

$$5. (a) (1 - t^2)/(t^2 + 1)^2 (b) -\frac{2}{25} \text{ ft/s}$$

$$(d) 0 \le t < 1 (e) \frac{57}{65} \text{ ft} (f)$$

$$t = 0, s = 0$$

(c) t = 2, 6

(c) t = 1

t=1

t = 8. $s = \frac{8}{65}$

7.
$$t=4$$
 s 9. (a) 5.02 m/s (b) $\sqrt{17}$ m/s 11. (a) 30 mm²/mm; the rate at which the area is increasing with respect to side length as x reaches 15 mm (b) $\Delta A \approx 2x \Delta x$ 13. (a) (i) 5π (ii) 4.5π (iii) 4.1π

(b) 4π (c) $\Delta A \approx 2\pi r \Delta r$

15. (a)
$$8\pi \text{ ft}^2/\text{ft}$$
 (b) $16\pi \text{ ft}^2/\text{ft}$ (c) $24\pi \text{ ft}^2/\text{ft}$
The rate increases as the radius increases.
17. (a) 6 kg/m (b) 12 kg/m (c) 18 kg/m
At the right end; at the left end

19. (a)
$$4.75 \,\text{A}$$
 (b) $5 \,\text{A}$; $t = \frac{2}{3} \,\text{s}$
21. (a) $dV/dP = -C/P^2$ (b) At the beginning
23. (a) 16 million/year; 78.5 million/year
(b) $P(t) = at^3 + bt^2 + ct + d$, where $a \approx 0.00129371$,

$$b \approx -7.061422$$
, $c \approx 12.822.979$, $d \approx -7.743.771$
(c) $P'(t) = 3at^2 + 2bt + c$ (d) 14.48 million/year; 75.29 million/year (e) 81.62 million/year **25.** (a) $a^2k/(akt+1)^2$

27. (a)
$$0.926 \text{ cm/s}$$
; 0.694 cm/s ; 0
(b) 0; -92.6 (cm/s)/cm ; -185.2 (cm/s)/cm
(c) At the center; at the edge
29. (a) $C'(x) = 3 + 0.02x + 0.0006x^2$

29. (a)
$$C'(x) = 3 + 0.02x + 0.0006x^2$$

(b) \$11/pair, the rate at which the cost is changing as the 100th pair of jeans is being produced; the cost of the 101st pa (c) \$11.07

100th pair of jeans is being produced; the cost of the 101st pair **31.** (a) $[xp'(x) - p(x)]/x^2$; the average productivity increases as new workers are added.

33. -0.2436 K/min **35.** (a) 0 and 0 (b) C = 0(c) (0, 0), (500, 50); it is possible for the species to coexist.